

Overview of Generic PET Applications

Sema Basaran, Ph.D. The 34th Annual High Country Nuclear Medicine Conference. March 1-6, 2013

Disclaimer

This presentation reflects the views of the presenter and should not be construed to represent FDA's views or policies.

What kind of an application should be submitted

- An applicant seeking approval for a PET drug may submit an ANDA, depending on the specific drug and the indications.
- ANDA applications submitted based on previously approved drug product (RLD).

The current products reviewed by the OGD

- FDG F-18 injection, USP
- Sodium Fluoride F 18 injection, USP
- Ammonia N 13 injection, USP

The Review Formats

- Electronic CTD Review Format
- QbR Review Format (not common)
- PET Review Samples listed in the PET Guidelines in the CMC Section.

The Important Changes In The PET Reviews

- Regulations revised for PET applications and multiple formulations in a single PET ANDA is acceptable. This was approved on 9-13-2011.
- The firm should provide the final release and stability test results for three lots of the highest strength.
- For the additional manufacturing facilities, the firm should provide stability data on one batch from each facility.

Drug Master Files

- The Type V DMFs for Cyclotrons will be reviewed as applicable by the ONDQA and CDRH. Some information is recommended to be included in the ANDA.
- The Type III DMFs for container/closure information will be reviewed by OGD reviewers.
- The Type II DMFs for starting material (Mannose Triflate) for FDG will be reviewed by ONDQA or OGD.
- The other starting materials such as water O 16 or O 18 will be reviewed during the CMC review.

Mannose Triflate

 If there are multiple suppliers for mannose triflate, do the materials from each of these suppliers meet the applicant's specifications?

 Some batches of Fludeoxyglucose F 18 Injection should be made from mannose triflate from each supplier

Specification for O-18 water

- Suppliers generally have enrichment acceptance criterion of > 90%.
- If a PET drug producer proposes enrichment acceptance criterion that is less then supplier's criterion, then it should be justified.
 - Less enrichment with O-18 means more O-16 water. O-16 During cyclotron bombardment produces N-13.
 - Applicant needs to show that the excess N 13 can be removed from product or will not be present in excessive amounts in the product.
- In general, if proposed acceptance criteria are more relaxed (inferior) to supplier's criteria, it should be justified by the applicant (with some data or scientific explanation).
- Important attributes for O-18 water:
 - O-18 enrichment
 - Fluoride content
 - Conductivity
- If there are multiple suppliers listed, identify the O-18 water from each equivalent supplier to the one qualified (from which batches were made)?

The Release Specifications

- Appearance
- Specific activity
- Radiochemical identity
- Radiochemical purity
- Radionuclidic identity
- Radionuclidic purity (USP <821>using gamma-ray spectrometer)
- Chemical purity
- pH
- BET
- Sterility
- Osmolality
- Requirements listed under injections <1>

Testing

- Tests routinely conducted vs. tests conducted periodically
 - Tests routinely conducted for every batch are to be listed in specification table.
 - Testing listed in specification table (except for sterility) must be completed before final release of the batch.
 - Tests conducted periodically should be listed separately from specification with specific schedule described (specific batch that will be periodically tested should be identified in the application)
 - Acceptable to perform periodic testing on:
 - 2 Chloro-2-deoxy-D-glucose in FDG
 - Radionuclidic purity

Reference Standards

- The firm should use non-radioactive standard related to the analytical testing.
- The radioactive standard using the determination of radionuclidic purity or calibration of the equipment should be provided.

Impurities For FDG F 18 injection

 2-chloro-2-deoxy-D-glucose (Related Compound B)

– NMT 1 mg per dose.

- Kryptofix (aminopolyether; Related Compound A) :
 - 50µg/mL

Impurities for Ammonia N 13 Injection

The concentration of aluminum ion in the injection is NMT 10 µg/mL.

• These limits are per USP monograph.

Reprocessing of Drug Products

 Generally the final product is not to be reprocessed. But, if you reprocess the product, provide what is the procedure, why are you reprocessing.

Recovery

 Recovery of the water O 16 and water O 18 used in the manufacturing should be addressed in the application.

Recycled O-18 Water

- If O-18 water is recycled, the reprocessing procedure should be provided.
- Should have acceptance specifications for reprocessed water.
 - Preferably these should be similar to virgin water.
 - If not, these should be justified.
 - Should have data for some reprocessed lots

Fludeoxyglucose F 18 Injection

- Nucleophilic substitution of the triflate-leaving group by ¹⁸F⁻ from the precursor mannose triflate in presence of a phase transfer agent (kryptofix) - 1,3,4,6-tetra-O-acetyl-2-fluoro-2-deoxyglucose.
- Base hydrolysis may lead to epimerization of FDG to a radiochemical impurity of 2-[¹⁸F]fluoro-2-deoxy-D-mannose (FDM).
- Radiochemical purity test may not detect this impurity.
- Applicant needs to show (validate) that under the hydrolysis conditions they employ, this epimerization does not occur.

Stability

- Stability summary, pre-approval stability protocol
- Post-approval stability protocol
- Stability data should be provided.

Stability

- We require a minimum of 3 batches at or near the upper end of the proposed radio-concentration.
 - If different synthesizers (methods of synthesis) are used, 3 batches from each method of synthesis at near the upper end of the proposed radioconcentration are recommended.
- Batches do not have to be made in same facility. For the additional manufacturing facilities, the firm should provide stability data on one batch from each facility.

Microbiology Review

- Part of CMC
- Separate Discipline from Chemistry
- Focus on Product Sterility and Pyrogenicity
- Review of New Applications (INDs, NDAs & ANDAs) and Supplements
- INDs and NDAs reviewed by OPS/New Drug Microbiology Group
- ANDAs reviewed by OGD Division of Microbiology

Unique Aspects of PET Manufacturing

- Extremely small batches/sub-batches
- Purchased pre-sterilized/depyrogenated, sealed components
- Filter sterilized
- Aseptically Filled
- Unique testing/"release" requirements
 - Sterilizing filter integrity critical
 - Bacterial endotoxins testing
 - Sterility testing

Sterility Assurance issues to be described in ANDA:

- Product information
- Facility description
- Manufacturing Process
- Environmental Monitoring
- Media fills
- Product release tests

PET Application Improvement Recommendations

Description of Overall Manufacturing Process

- Describe address, manufacturing area (including environmental controls, such as laminar air flow hoods, biosafety cabinets, etc.)
- Batch records

Environmental Monitoring

- Routine and/or periodic monitoring of personnel, surfaces & air during sterility testing and critical aseptic manipulations
- Sampling methods & frequency
 - Cultivation: Media & incubation details
 - Action levels
 - Actions following exceeded limits

PET Application Improvement Recommendations (2)

Media Fills

Qualification of operators including simulation of production methods

Actions Taken in Response to Failed Product Tests

- Sterility
 - Notification of adminstering facility and/or physician
- Endotoxins
 - Repeat testing?

Validation of Release Tests

- Sterility test validation data
- Endotoxins test validation data

Microbiology Release Tests

- Sterility
- Endotoxins
- Testing is required: 21 CFR 212. 70(e)

Product Sterility Testing

- Product may be released/administered before the test is finished (21CFR 211.165(a) and 21 CFR 212.70(c))
- Initiate test within 30 hours after completion of production*
 - *30-hour requirement may be exceeded due to a weekend or holiday, if demonstrated that longer period does not adversely affect the sample or test results and sample is stored appropriately (e.g.,under refrigeration).
- Individually tested product samples, not pooled
- After successful sterility test record is established for a particular PET drug, it is only necessary to test the first batch prepared each day (subbatch testing not necessarily required)

Product Sterility Testing (2)

- Method
 - Include Materials, Controls & Validation
 - Reference USP <71> or equivalent (provide SOP)
 - Sample Type, Size, Time & Storage
 - Growth Media, Incubation Parameters and Examination Time Points
- Identify the Testing Laboratory
- Actions Following a Test Failure
 - Notifications, Investigation and Corrective Action Plans

Product Endotoxins Test

Product Specification

- NMT 175 EU/V, where V is the maximum volume of patient dose (mL)
- Testing performed and completed prior to release for human use

Product Endotoxins Test (2)

- Identify the Testing Laboratory
- Method
 - Include Materials, Controls & Validation
 - Reference USP <85> or equivalent (provide SOP)
 - Modified Gel-Clot or Rapid Photometric
- Actions Following a Test Failure
 - Notifications, Investigation and Corrective Action Plans

PET References

- USP <823> -Positron Emission Tomography Drugs for Compounding, Investigational, and Research Uses – 2012
- 21 CFR 212 effective 12/12/11

PET Guidances

Guidance: PET Drug Applications – Content and format for NDAs and ANDAs- 8/11

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078738.pdf

- Guidance: PET Drugs Current Good Manufacturing Practice (CGMP) – 12/09 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070306.pdf
- Guidance: Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography (PET) Drugs – 4/12 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM273766.pdf
- Guidance: FDA Oversight of PET Drug Products Questions and Answers – 2/12 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM290024.pdf

Contact Information

Sema Basaran, Ph.D

Acting Team Leader FDA/CDER/OGD/Division of Chemistry

Lynne A. Ensor, Ph. D

Deputy Division Director/Acting Director FDA/CDER/OGD/Division of Microbiology

240-276-8827

lynne.ensor@fda.hhs.gov

Acknowledgements

 Robert Iser, Director, Division of Chemistry IV, OGD